40 research outputs found

    STAT3 gain-of-function mutations connect leukemia with autoimmune disease by pathological NKG2Dhi CD8+ T cell dysregulation and accumulation

    Get PDF
    The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD

    STAT3 gain-of-function syndrome

    Get PDF
    STAT3 gain-of-function (GOF) syndrome is a multi-organ primary immune regulatory disorder characterized by early onset autoimmunity. Patients present early in life, most commonly with lymphoproliferation, autoimmune cytopenias, and growth delay. However, disease is often progressive and can encompass a wide range of clinical manifestations such as: enteropathy, skin disease, pulmonary disease, endocrinopathy, arthritis, autoimmune hepatitis, and rarely neurologic disease, vasculopathy, and malignancy. Treatment of the autoimmune and immune dysregulatory features of STAT3-GOF patients relies heavily on immunosuppression and is often challenging and fraught with complications including severe infections. Defects in the T cell compartment leading to effector T cell accumulation and decreased T regulatory cells may contribute to autoimmunity. While T cell exhaustion and apoptosis defects likely contribute to the lymphoproliferative phenotype, no conclusive correlations are yet established. Here we review the known mechanistic and clinical characteristics of this heterogenous PIRD

    A human STAT3 gain-of-function variant confers T cell dysregulation without predominant Treg dysfunction in mice

    Get PDF
    Primary immune regulatory disorders (PIRD) represent a group of disorders characterized by immune dysregulation, presenting with a wide range of clinical disease, including autoimmunity, autoinflammation, or lymphoproliferation. Autosomal dominant germline gain-of-function (GOF) variants in STAT3 result in a PIRD with a broad clinical spectrum. Studies in patients have documented a decreased frequency of FOXP3+ Tregs and an increased frequency of Th17 cells in some patients with active disease. However, the mechanisms of disease pathogenesis in STAT3 GOF syndrome remain largely unknown, and treatment is challenging. We developed a knock-in mouse model harboring a de novo pathogenic human STAT3 variant (p.G421R) and found these mice developed T cell dysregulation, lymphoproliferation, and CD4+ Th1 cell skewing. Surprisingly, Treg numbers, phenotype, and function remained largely intact; however, mice had a selective deficiency in the generation of iTregs. In parallel, we performed single-cell RNA-Seq on T cells from STAT3 GOF patients. We demonstrate only minor changes in the Treg transcriptional signature and an expanded, effector CD8+ T cell population. Together, these findings suggest that Tregs are not the primary driver of disease and highlight the importance of preclinical models in the study of disease mechanisms in rare PIRD

    A Novel STAT3 Mutation in a Qatari Patient With Hyper-IgE Syndrome

    Get PDF
    Autosomal dominant hyper-IgE syndrome caused by mutations in the transcription factor STAT3 (AD-HIES) is characterized by a collection of immunologic and non-immune features including eczema, recurrent infections, elevated IgE levels, and connective tissue anomalies. We report the case of a Qatari child with a history of recurrent staphylococcal skin infections since infancy, who was found to have a novel, de novo mutation in STAT3 (c.1934T>A, p.L645Q). The absence of mucocutaneous candidiasis and undetectable IgE levels until the age of 7 years prolonged the time to molecular confirmation of the cause for the patient's immune deficiency. STAT3 p.L645Q was found to have decreased transcriptional capacity. The patient also had low levels of Th17 cells and STAT3 phosphorylation was impaired in patient-derived cells. Nearly 100 unique mutations in STAT3 have been reported in association with AD-HIES

    STAT3 gain-of-function mutations connect leukemia with autoimmune disease by pathological NKG2Dhi CD8+T cell dysregulation and accumulation

    Get PDF
    The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co -exist-ing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-y, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumula-tion. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumu-lation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.Peer reviewe

    Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome

    Get PDF
    Autosomal dominant hyper-IgE syndrome (AD-HIES) is typically caused by dominant-negative (DN) STAT3 mutations. Patients suffer from cold staphylococcal lesions and mucocutaneous candidiasis, severe allergy, and skeletal abnormalities. We report 12 patients from 8 unrelated kindreds with AD-HIES due to DN IL6ST mutations. We identified seven different truncating mutations, one of which was recurrent. The mutant alleles encode GP130 receptors bearing the transmembrane domain but lacking both the recycling motif and all four STAT3-recruiting tyrosine residues. Upon overexpression, the mutant proteins accumulate at the cell surface and are loss of function and DN for cellular responses to IL-6, IL-11, LIF, and OSM. Moreover, the patients’ heterozygous leukocytes and fibroblasts respond poorly to IL-6 and IL-11. Consistently, patients with STAT3 and IL6ST mutations display infectious and allergic manifestations of IL-6R deficiency, and some of the skeletal abnormalities of IL-11R deficiency. DN STAT3 and IL6ST mutations thus appear to underlie clinical phenocopies through impairment of the IL-6 and IL-11 response pathways

    Genetic errors of immunity distinguish pediatric non-malignant lymphoproliferative disorders

    Get PDF
    Background Pediatric non-malignant lymphoproliferative disorders (PLPD) are clinically and genetically heterogeneous. Long-standing immune dysregulation and lymphoproliferation in children may be life-threatening, and a paucity of data exists to guide evaluation and treatment of children with PLPD. Objective The primary objective of this study was to ascertain the spectrum of genomic immunologic defects in PLPD. Secondary objectives included characterization of clinical outcomes and associations between genetic diagnoses and those outcomes. Methods PLPD was defined by persistent lymphadenopathy, lymph organ involvement, or lymphocytic infiltration for more than 3 months, with or without chronic or significant EBV infection. Fifty-one subjects from 47 different families with PLPD were analyzed using whole exome sequencing (WES). Results WES identified likely genetic errors of immunity in 51% to 62% of families (53% to 65% of affected children). Presence of a genetic etiology was associated with younger age and hemophagocytic lymphohistiocytosis. Ten-year survival for the cohort was 72.4%, and patients with viable genetic diagnoses had a higher survival rate (82%) compared to children without a genetic explanation (48%, p = 0.03). Survival outcomes for individuals with EBV-associated disease and no genetic explanation were particularly worse than outcomes for subjects with EBV-associated disease and a genetic explanation (17% vs. 90%; p = 0.002). Ascertainment of a molecular diagnosis provided targetable treatment options for up to 18 individuals and led to active management changes for 12 patients. Conclusion PLPD therefore defines children with high risk for mortality, and WES informs clinical risks and therapeutic opportunities for this diagnosis

    The Natural History of X-Linked Lymphoproliferative Disease (XLP1): Lessons from a Long-Term Survivor

    No full text
    X-linked lymphoproliferative disease (XLP1) is a rare primary immunodeficiency characterized by EBV-triggered immune dysregulation, lymphoproliferation, dysgammaglobulinemia, and lymphoma. Early childhood mortality from overwhelming inflammation is expected in most patients. The only curative therapy is hematopoietic stem cell transplant (HSCT); however, whether to perform HSCT on an asymptomatic patient remains debatable. This uncertainty arises because the natural history of XLP1 patients without transplantation is not clear. In this case report, we present the natural history of XLP1 in a 43-year-old male patient who did not receive HSCT. We also review the literature on untransplanted XLP1 patients who lived into mid-adulthood. Despite surviving childhood presentations that are typically fatal, we found that these rare patients remain susceptible to manifestations of XLP1 decades later
    corecore